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J. Phys. A: Math. Gen. 16 (1983) L105-L108. Printed in Great Britain 

LETTER TO THE EDITOR 

Reflections on the symmetry-conservation law duality and 
the Runge-Lenz vector 

Geoff Prince 
School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, 
Dublin 4, Ireland 

Received 10 December 1982 

Abstract. Following recent interest in an earlier work on the Kepler problem, a number 
of remarks are made concerning the many-faceted symmetry-conservation law duality in 
classical mechanics. In particular, the advantages of associating a number of symmetries 
with the Runge-Lenz vector are discussed. 

A few years ago C J Eliezer and I produced some work on the classical Kepler problem 
(Prince and Eliezer 1981) which has recently raised interest in these pages and 
elsewhere (Schafir 1981, Sarlet and Cantrijn 1981a, b, Mariwalla 1982). In this letter 
I would like to make a number of remarks about the comments of Schafir and Mariwalla 
and to place our original results in a broader perspective. 

The ‘symmetry-conservation law’ duality in physics has always been a popular and 
contentious issue. Perhaps the most outstanding feature of the idea is the multiplicity 
of its realisations, and herein lies the source of much of the dispute. The modern 
concept probably owes itself to Klein, whose statement in his Erlanger programme 
that geometries may be classified according to properties left invariant under groups 
of transformations was the precursor of his proposal for a study of the classification 
of conservation laws of differential equations according to the invariance group of the 
variational principle from which they are derived (Klein 1918a, b). Certainly Noether 
(1918) acknowledges his suggestion in the presentation of her famous theorem, 
although the considerations there are restricted to the invariance of the action integral 
rather than of the variational principle. The mathematical technique on which her 
work depended was Lie’s theory of differential equations and continuous transforma- 
tion groups, as have most subsequent approaches to the problem. 

By the end of the last decade it had been established that the invariance group of 
the action integral was a subgroup of the invariance group of the variational principle 
as far as group action on configuration space is concerned (the so-called ‘point’ 
symmetries). Furthermore, while the ‘Noether’ symmetries led to closed form con- 
servation laws, the larger class of ‘Lie’ symmetries in general did not (a notable 
exception being for special functional forms of the force giving the ‘KLM’ constants, 
see Mariwalla (1980) and references therein). However, this larger group has the 
advantage of not depending on the existence of a Lagrangian, only on the equation 
of motion, and there is an algorithm for producing associated first integrals using the 
solvable subalgebras of the associated Lie algebra (Prince (1981); this is the rigorous 
version of the considerations leading to the Runge-Lenz vector in our paper). Both 
types of symmetry have a clear geometric nature, being actions on the configuration 
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space (M), and some geometric deformation of the trajectories is usually associated 
with the resulting conservation laws. (I refer the reader to the review paper of Sarlet 
and Cantrijn (1981b) for details of the development of Noether’s theorem.) 

In general, however, there will be conservation laws which are not associated in 
the above ways with symmetries, and of course mathematical physicists are wont to 
look for a one-to-one correspondence between such classes of related objects. At 
this point we need to have a clear idea of what we want to mean by the term invariance. 
No matter how much Lie’s original calculations depended on invariance of functional 
forms (his work was very coordinate dependent), his underlying idea was that the 
action of a one-parameter invariance group should be to map trajectories into trajec- 
tories. It was this feature of his theory which attracted differential geometers and 
which led, through considerations of invariance of families of geodesics, to the theory 
of projective, affine, isometric and conformal invariance (and to the association of 
conservation laws and symmetries developed by Katzin and Levine and, independently, 
Mariwalla; see Eisenhart (1926, 1927), Yano (1955) and, for example, Katzin and 
Levine (1974), Mariwalla (1975)). Now, given this idea of invariance, Cartan had the 
simple relevation (in hindsight) that a one-parameter group acting on evolution space 
E ( R X  234, R being for time) will transform the trajectories on M by lifting them to 
E, using the group, and then projecting the resulting curves back onto M. Importantly, 
such a transformation will usually not be the result of the action of a one-parameter 
group on R X M .  By requiring that such a one-parameter group on E permute the 
trajectories (considered on E or M), Noether’s theorem can be generalised, as can 
Lie’s theory. What we get is a class of these ‘dynamical’ symmetries, called Cartan 
symmetries, which are in one-to-one correspondence with all the conservation laws 
of the system (by direct construction, see e.g. Crampin (1977)). The other features 
of this formulation are that all Noether symmetries are Cartan symmetries and all 
Lie symmetries are dynamical symmetries (see Prince 1983). However, the association 
of conservation law and symmetry may change if a non-trivially equivalent Lagrangian 
for the system is used-one reason not to be dogmatic about the nature of the duality 
(see Marmo and Saletan 1977). 

The ruthless insistence on a one-to-one correspondence is at the expense of a 
good deal of geometric interpretation. For example, with the classical Kepler problem 
(it4 = R2) our vector field 

y3 = ta/at +$alar (1) 

t= t exp (a3),  i = r exp (5a3), e = e  (2) 

generates the finite transformations on R x R2 
2 

(a3 being the group parameter), with geometric paths 

r3/t2 = constant, 6 =constant. (3) 
In addition, Y3 is the only Lie symmetry which non-trivially deforms the orbits leaving 
those geometric features associated with the Runge-Lenz vector, namely eccentricity 
and orbit orientation, invariant. 

Using the Cartan approach, we find that the two vector fields on E associated 
with the two Cartesian components of the Runge-Lenz vector are 
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and 

up to a multiple of the fundamental vector field 

(Prince 1981, Sarlet and Cantrijn 1981a, b). This correspondence is one-to-one but 
not laden with geometric import as far as M or R x M  is concerned. 

So, when it is insisted that only the energy can be associated with the dilatation 
symmetry (1) (Mariwalla 1982), it must be understood which association between 
conservation laws and symmetries is being used. Also, when a one-to-one correspon- 
dence is insisted upon (Schafir 1981), we must realise that it will not give us a great 
deal of insight into the geometrical invariances of the orbits, even though it may be 
necessary when no Lie symmetries exist to 'correspond' to a given conservation law. 
The overriding lesson is that the symmetry-conservation law duality is more valuable 
considered in all its manifestations rather than in any particular one of them. 

Schafir also raises the question of whether our integration procedure gives any 
regard to the vectorial nature of the Runge-Lenz vector. In particular, he raises the 
objection that the 'transformed infinitesimal invariance is not associated with the 
transformed (as a vector) constant' (my paraphrasing). The following observations may 
clarify the point. Consider the Kepler problem in two dimensions again and use 
Cartesian coordinates ( x 1 , x 2 ) .  Then every point on M has an orbit through it and 
hence a Runge-Lenz vector attached to it. The vector field thus defined is 

R = R i a l a x i  = [ x i ( +  i )  - . i i ( r  a i )  - p x ' / r ] a / a x i ,  (7) 

where the 1' are understood to be given by the tangent vector field to the orbits at 
each point ( X I ,  x 2 ) .  Now, on either R x M  or R X TM (the prolongation of R to R x TM 
is just R"' = R because r(R ' ) = 0), 

(8) [ Y3, RI = [ Y:", R"'] = -$R, 

yy<:,R"' = -p, (9) 

that is, 

which simply says that R is transformed (as a vector) into itself under the flow of Y3. 
Furthermore, in as much as the vector fields 21, Z2 'represent' R', R 2 ,  the salient 
transformation properties are, not surprisingly, 

(see Prince (1983): in the application of the rigorous integration procedure found in 
Prince (1981) I have shown that Y3 leads to the scalar constant lBll, and moreover 

Finally, I want to say something positive about the Cartan approach to the 
symmetry-conservation law duality. In differential geometry, particularly as it is used 
in general relativity, the technique allows a very thoroughgoing formulation and 
generalisation of the 'projective differential geometry' of Eisenhart and others. 
Specifically, it allows (i) the previously troublesome induced proper time variation to 

[ y3 ,  a l a e ]  = 0). 
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be simply dealt with, (ii) the appearance of proper time dependent conserved quantities 
and (iii) a simple relation between Killing tensors and vector fields on the evolution 
space ( R x T M ;  M being the usual space-time). These results will be the subject 
of a future paper. 
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